Machine learning-estimated axial length is better than spherical equivalent for identifying high-risk myopic eyes Gareth Lingham^{1,2}, James Loughman¹, Eoin Kerin¹, Samantha Lee², David Mackey²,

Siofra Harrington³, Kathryn Saunders⁴, Ian Flitcroft^{1,5}

1 Centre for Eye Research Ireland, Technological University Dublin, Dublin, Ireland 3. School of Physics and Optometric and Clinical Sciences, Technological University Dublin, Dublin, Ireland 5. Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland

Introduction

- Myopia increases risk of vision loss from retinal detachment, glaucoma and myopic maculopathy¹
- Higher risk of vision loss is strongly associated with **axial length (AL),** with a longer eye at higher risk²
- **Treatments to reduce axial eye growth** are available³
- Identifying myopic children and adolescents with a long axial length will ultimately reducing their risk of vision loss later in life, by enabling access to timely and appropriate myopia-control treatment

Methods

Development of the AL estimator

- A machine learning-based algorithm (AL estimator) was trained using data on age, sex, spherical refractive error, astigmatism and corneal radius of curvature derived from 4163 participants
 - 1626 (aged 5-13 years) from Ireland⁴
 - 2189 (aged 5-19 years from Northern Ireland⁵)
 - 348 (aged 6-77 years) from South Korea⁶

Performance of the AL estimator

 The AL estimator was evaluated using data from participants of myopia-control treatment trials (3 Irish⁷, 1 Australian⁸)

Statistical analysis

- Right eye data were used for the analysis
- Bland-Altman statistics were used to compare estimated and actual AL.
- Receiver operating characteristic analysis was used to assess the ability of the AL estimator, compared to spherical equivalent (SE) to identify children with a high AL (≥26mm) and fast progressors (≥0.3mm axial elongation in 12 months).

ILLSCOIL TEICNEOLAÍOCHTA

UNIVERSITY DUBL

BHAILE ÁTHA CLIATH

Age n (% Mea

Irish data from Myopia Outcome Study of Atropine in Children (MOSAIC) and other studies conducted at the same institute. Australian data from Western Australian Atropine Treatment of Myopia Study (WA-ATOM). AL: axial length; SE: spherical equivalent

2. Centre for Ophthalmology and Visual Sciences (incorporating Lions Eye Institute), University of Western Australia, Perth, Australia 4. School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland

Results

Table 1. Baseline characteristics of studies used to evaluate the AL estimator

Characteristics	Ireland	Australia
	354	153
n (SD) age [years]	11.2 (2.4)	11.7 (2.7)
range (years)	6-17	6-17
) female	77 (57.0%)	183 (60.6%)
n (SD) SE [D]	-3.21 (1.74)	-3.39 (1.17)

Figure 1: Bland-Altman plots demonstrating a small mean difference in axial length (AL) at baseline and 12-month change measured by biometry and using the AL estimator; LOA: limits of agreement; CI: confidence interval

Figure 2: Receiver operating characteristics (ROC) curves showing that AL estimator was better than spherical equivalent at identifying participants with a high axial length or who had faster axial eye growth, but performed similarly at identifying mid and stable axial eye growth.

Table 2. Resul

Lin's con correlatio

*p < 0.001 for paired comparison of mean axial length between biometry and AL estimator ⁺p=0.59 for comparison of mean axial length change between biometry and AL estimator

ts	com	paring	actual	and	estimated	axial	length

sults	Baseline axial length	12-month axial length change		
6 CI) [mm] – netry	24.78 (24.69, 24.86)	0.21 (0.20, 0.23)		
6 CI) [mm] – imator	24.85 (24.77, 24.95) *	0.21 (0.19, 0.24)†		
ility coefficient	0.91 mm	0.29 mm		
cordance on (95% CI)	0.89 (0.87, 0.91)	0.77 (0.72, 0.80)		

Conclusions

- mm)
- myopia.

References

8. Lee SSY, et al. Western Australia Atropine for the Treatment of Myopia (WA-ATOM) study: Rationale, methodology and participant baseline characteristics. Clin Exp Ophthalmol. 2020;48(5):569-79.

• The AL estimator provided a valid estimate of AL (LOA: +/- 1mm) and 12-month change in AL (LOA: +/- 0.3)

• The AL estimator demonstrated **high diagnostic** performance in identifying individuals with long AL and those who exhibited excessive axial elongation, and was **better than spherical equivalent alone**

Where **biometry is unavailable**, the AL estimator may represent a **useful clinical tool** for identifying children at higher risk of axial growth-related complications of

1. Haarman AEG, et al. The complications of myopia: A review and meta-analysis. Invest Ophthalmol Vis Sci. 2020;61(4):49.

2. Tideman JWL, et al. Association of axial length with risk of uncorrectable visual impairment for Europeans with myopia. JAMA Ophthalmol. 2016;134(12):1355-63. 3. Gifford KL, et al. IMI – Clinical management guidelines report. Invest *Ophthalmol Vis Sci. 2019;60(3):M184-M203.*

4. Harrington SC, et al. Refractive error and visual impairment in Ireland schoolchildren. Br J Ophthalmol. 2019;103(8):1112-8.

5. O'Donoghue L, et al. Sampling and measurement methods for a study of childhood refractive error in a UK population. Br J Ophthalmol. 2010;94:1150-4 6. Kim H-S, et al. Comparison of predicted and measured axial length for ophthalmic lens design. PLOS ONE. 2019;14(1):e0210387 7. McCrann S, et al. Myopia Outcome Study of Atropine in Children (MOSAIC):

Design and Methodology. HRB Open Res. 2019;2(15):1-21

Dr Gareth Lingham Centre for Eye Research Ireland Technological University Dublin Gareth.lingham@tudublin.ie www.ceri.ie

Centre for Eye Research Ireland