# Asian and Western refractive centile curves from meta-analysis of population refraction data





# Centiles - a well established concept in paediatrics

- Gives immediate snapshot of where a child is in terms of growth and allows monitoring over time
- Great advantage is that most parents have been trained in the concept before you ever meet them



# "Relatively" new in eye care

Originally introduced by Monroe J. Hirsch in 1952. Recently emerged as a clinical priority.



# Why refraction centiles

- > Axial length centiles already available
- > Axial length is a key metric for myopia management

#### BUT...

- > Very few practitioners have access to biometry right now
- > Population-Based Refractive centiles:
  - Are a precise indicator of likely future progression
  - Allow clinicians to explain what a child's prescription means in terms of risk in a way that is intuitive to parents (more difficult with axial length)
  - Support evidence-based personalised clinical decision making





# CENTILE METHODOLOGY

## Data Sources – published epidemiological data from Asia, USA, Europe

>

- > 35,645 refraction measurements
- > 8 large population-based studies

| WESTERN |                     |                    |  |  |  |
|---------|---------------------|--------------------|--|--|--|
| NHANES  | USA                 | 8,915 <sup>ª</sup> |  |  |  |
| NICER   | Northern Ireland    | 2,424 <sup>b</sup> |  |  |  |
| IES     | Republic of Ireland | 1,626 <sup>b</sup> |  |  |  |

> 12,965 European/North American eyes

22,680 Asian eyes

**ASIAN** South Korea 11,569 <sup>a</sup> **KNHANES** China 1,563 <sup>b</sup> GTES China 3,940<sup>b</sup> RESC 3,676<sup>b</sup> China HSS China 1.932<sup>a</sup> **JDES** 

Table 1: Data summary of studies included in the meta-analysisAbbreviations: KNHANES, Korean National Health and Nutrition Examination Survey; GTES, GuangzhouTwin Eye Study; RESC, Refractive Error Study in Children; HSS, Haidian School Survey; JDES, JinenanDistrict Eye Study; NHANES, National Health and Nutrition Examination Survey; NICER, Northern IrelandChildhood Errors of Refraction study; IES, Ireland Eye Study; N, number<sup>a</sup> Non-cycloplegic refraction<sup>b</sup> Cycloplegic refraction



# Centile Methodology

- Secondary data meta-analysis of refraction data
- > Multi-Gaussian
- > Better fit than Box Cox Power Exponential
  - Empirical quantiles were generated by age, group and gender
  - o Cumulative Distribution Function model created
  - Specific centile curves generated by weighted cubic spline interpolation according to the number of participants in each age group in each study

#### Refractive error data non-normal



# Centile Charts: Regional Comparison - Girls





# Centile Charts: Regional Comparison - Boys





# Centile Charts: Gender Comparison

## ASIA

Median refraction (age 6) +0.25D Boys +0.24D Girls

Median refraction myopic by age 10 (boys), 9.5(girls)

Gender differences minimal until age 11, increased with age and were greatest in myopes





# Centile Charts: Gender Comparison

## WEST

Median refraction (age 6) **+1.33D Boys +1.34D Girls** Median refraction did not reach myopia by age 18 Gender differences most marked in hyperopes





Some Practical Applications

# ADULT EQUIVALENT REFRACTION

# ASIA

For incipient myopia (-0.5D) at different ages

| GENDER | AGE | CENTILE          | AT 16<br>YRS |
|--------|-----|------------------|--------------|
| male   | 6   | centile = 85.53% | -9           |
|        | 7   | centile = 76.91% | -7.38        |
|        | 8   | centile = 66.63% | -6.3         |
|        | 9   | centile = 55.62% | -5.42        |
|        | 10  | centile = 46.64% | -4.88        |
|        |     |                  |              |
| female | 6   | centile = 85.7%  | -9.97        |
|        | 7   | centile = 78.3%  | -7.73        |
|        | 8   | centile = 67.36% | -6.29        |
|        | 9   | centile = 55.34% | -5.56        |
|        | 10  | centile = 44.88% | -5.06        |

### WEST

For incipient myopia (-0.5D) at different ages

| GENDER | AGE | CENTILE          | AT 16<br>YRS |
|--------|-----|------------------|--------------|
| male   | 6   | centile = 99.37% | -7           |
|        | 7   | centile = 96.63% | -4.9         |
|        | 8   | centile = 91.93% | -3.36        |
|        | 9   | centile = 85.71% | -2.11        |
|        | 10  | centile = 80.87% | -1.55        |
|        |     |                  |              |
| female | 6   | centile = 99.56% | -6.82        |
|        | 7   | centile = 96.26% | -4.44        |
|        | 8   | centile = 90.83% | -3.11        |
|        | 9   | centile = 85.47% | -2.28        |
|        | 10  | centile = 80.62% | -1.66        |







Which equates to a lower ADULT EQUIVALENT REFRACTION



Some Practical Applications

# **ANNUAL PROGRESSION**

# Evaluation of centile predicted progression

10,774 myopes < 20 years with longitudinal EHR data (at least three visits)

Correlation between centile predicted progression and measured progression

Using SER centile position: Using Progression centiles:  $R^2 = 0.93$ . MAE: 0.24D  $R^2 = 0.85$ . MAE: 0.32D

Using Enhanced Machine Learning Model:  $R^2 = 0.95$ . MAE: 0.21D



# **Clinical Value**

> Centile charts utilised by agencies such as the CDC & WHO as clinically important means of monitoring child growth

# For Refractive Error

#### **Risk Profiling**

- > Identification of Pre-myopes
- > Adult predictions of future refraction and axial length
- > Ocular disease and vision impairment risk estimation

#### Myopia control treatment monitoring

- Treatment efficacy analysis
- Personalised clinical decision making

Centiles provide a more complete clinical picture for every patient

Enhance Treatment Uptake

Enhance Treatment Retention

# Better Health Outcomes

# **Clinical Trial Value**

- > Ethical Concerns
- > Recruitment & Retention Concerns

#### Applications

- Patient selection trial participants often not representative of clinical populations
- > Evaluating trial representativeness
- Trial risk management safety, efficacy and protection against dropout

#### **Virtual Control Group**

- > Avoid the need for placebo control group and/or safety net against preferential dropout of fast progressing controls
- Individual patient-level efficacy analytics how each participants progression compares to real world expected progression





# Conclusion

#### **Refraction centile charts**

- > Support evidence based clinical decision making
- > Are more relevant to clinicians than axial centiles right now
- > Can promote better uptake and retention for myopia control treatments
- > Bring added value in the clinical trial space



# Thanks to my co-authors and wider team at CERI



Prof. Kathryn J. Saunders



Dr. Siofra Harrington



Prof. Daniel I. Flitcroft



# Thank you

